A B C D E F G H I K L M N O P R S T U V W Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
D
- data - Variable in class ristretto.problem.fs.subset.FSSubsetProblem
-
The dataset
- DatasetSplitter - Class in ristretto.tools
-
Split a dataset into a training and test datasets given a test proportion, that is, the proportion of data reserved to the test dataset.
- DatasetSplitter() - Constructor for class ristretto.tools.DatasetSplitter
- DaviesBouldin - Class in ristretto.jmltools.clustering.evaluation
-
This class implements the CVI proposed by Davies and Bouldin in [1].
- DaviesBouldin() - Constructor for class ristretto.jmltools.clustering.evaluation.DaviesBouldin
-
Construct a new evaluator that will use the Euclidean distance to measure the errors.
- DaviesBouldin(DistanceMeasure) - Constructor for class ristretto.jmltools.clustering.evaluation.DaviesBouldin
-
Construct a new evaluator that will use the supplied distance metric to measure the errors
- debug - Variable in class ristretto.problem.fs.subset.FSSubsetProblem
-
Whether to activate the debug logs
- defaultBase() - Method in class ristretto.ecjtools.LexicographicFitness
-
Return the default parameter base.
- defaultBase() - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
-
Return the default parameter base.
- defaultBase() - Method in class ristretto.problem.fs.subset.breed.FSSubsetMutationPipeline
-
Return the default parameter base.
- defaultBase() - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Return the default parameter base.
- defaultBase() - Method in class ristretto.problem.fs.subset.FSSubsetProblem
-
Return the default parameter base for this problem.
- defaultBase() - Method in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Return the default parameter base.
- defaultBase() - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Returns the default base for this problem.
- defaultBase() - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Return the default base for this problem.
- defaultBase() - Method in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Return the default base for this problem
- defaultBase() - Method in class tests.testLibSVM.TestLibSVM
-
Return the default base for this problem
- defaultClassifier - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Default classifier
- defaultCrossover(EvolutionState, int, FSSubsetIndividual) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Destructively crosses over the individual with another in some default manner.
- defaultMutate(EvolutionState, int) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Destructively mutates the individual in some default manner.
- defaultNumberOfClusters - Static variable in class ristretto.jmltools.clustering.LBG
-
Default value for the number of centroids
- defaultStopCriterion - Static variable in class ristretto.jmltools.clustering.LBG
-
Default value for the stop criterion
- defaultThreshold - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Default value for the similarity threshold
- defaultValidationProp - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Default validation proportion
- defaultValidationProp - Static variable in class tests.testLibSVM.TestLibSVM
-
Default validation proportion
- directLDA(Dataset) - Static method in class ristretto.jmltools.MoreDatasetTools
-
Performs a projection of a given dataset with the directLDA algorithm.
- directLDA(Dataset, double) - Static method in class ristretto.jmltools.MoreDatasetTools
-
Performs a projection of a given dataset with the directLDA algorithm [1].
- distortions - Variable in class ristretto.jmltools.clustering.LBG
-
Distortion of each cluster
- dm - Variable in class ristretto.jmltools.clustering.LBG
-
Distance measure used in the algorithm, defaults to Euclidean distance.
- DunnIndex - Class in ristretto.jmltools.clustering.evaluation
-
This class implements the CVI proposed by Dunn in [1].
- DunnIndex() - Constructor for class ristretto.jmltools.clustering.evaluation.DunnIndex
-
Construct a new evaluator that will use the Euclidean distance to measure the errors.
- DunnIndex(DistanceMeasure) - Constructor for class ristretto.jmltools.clustering.evaluation.DunnIndex
-
Construct a new evaluator that will use the supplied distance metric to measure the errors
All Classes All Packages