A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages

D

data - Variable in class ristretto.problem.fs.subset.FSSubsetProblem
The dataset
DatasetSplitter - Class in ristretto.tools
Split a dataset into a training and test datasets given a test proportion, that is, the proportion of data reserved to the test dataset.
DatasetSplitter() - Constructor for class ristretto.tools.DatasetSplitter
 
DaviesBouldin - Class in ristretto.jmltools.clustering.evaluation
This class implements the CVI proposed by Davies and Bouldin in [1].
DaviesBouldin() - Constructor for class ristretto.jmltools.clustering.evaluation.DaviesBouldin
Construct a new evaluator that will use the Euclidean distance to measure the errors.
DaviesBouldin(DistanceMeasure) - Constructor for class ristretto.jmltools.clustering.evaluation.DaviesBouldin
Construct a new evaluator that will use the supplied distance metric to measure the errors
debug - Variable in class ristretto.problem.fs.subset.FSSubsetProblem
Whether to activate the debug logs
defaultBase() - Method in class ristretto.ecjtools.LexicographicFitness
Return the default parameter base.
defaultBase() - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
Return the default parameter base.
defaultBase() - Method in class ristretto.problem.fs.subset.breed.FSSubsetMutationPipeline
Return the default parameter base.
defaultBase() - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Return the default parameter base.
defaultBase() - Method in class ristretto.problem.fs.subset.FSSubsetProblem
Return the default parameter base for this problem.
defaultBase() - Method in class ristretto.problem.fs.subset.FSSubsetSpecies
Return the default parameter base.
defaultBase() - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Returns the default base for this problem.
defaultBase() - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Return the default base for this problem.
defaultBase() - Method in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Return the default base for this problem
defaultBase() - Method in class tests.testLibSVM.TestLibSVM
Return the default base for this problem
defaultClassifier - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Default classifier
defaultCrossover(EvolutionState, int, FSSubsetIndividual) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Destructively crosses over the individual with another in some default manner.
defaultMutate(EvolutionState, int) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Destructively mutates the individual in some default manner.
defaultNumberOfClusters - Static variable in class ristretto.jmltools.clustering.LBG
Default value for the number of centroids
defaultStopCriterion - Static variable in class ristretto.jmltools.clustering.LBG
Default value for the stop criterion
defaultThreshold - Static variable in class ristretto.ecjtools.LexicographicFitness
Default value for the similarity threshold
defaultValidationProp - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Default validation proportion
defaultValidationProp - Static variable in class tests.testLibSVM.TestLibSVM
Default validation proportion
directLDA(Dataset) - Static method in class ristretto.jmltools.MoreDatasetTools
Performs a projection of a given dataset with the directLDA algorithm.
directLDA(Dataset, double) - Static method in class ristretto.jmltools.MoreDatasetTools
Performs a projection of a given dataset with the directLDA algorithm [1].
distortions - Variable in class ristretto.jmltools.clustering.LBG
Distortion of each cluster
dm - Variable in class ristretto.jmltools.clustering.LBG
Distance measure used in the algorithm, defaults to Euclidean distance.
DunnIndex - Class in ristretto.jmltools.clustering.evaluation
This class implements the CVI proposed by Dunn in [1].
DunnIndex() - Constructor for class ristretto.jmltools.clustering.evaluation.DunnIndex
Construct a new evaluator that will use the Euclidean distance to measure the errors.
DunnIndex(DistanceMeasure) - Constructor for class ristretto.jmltools.clustering.evaluation.DunnIndex
Construct a new evaluator that will use the supplied distance metric to measure the errors
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages