A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages

P

P_APPLY_LDA - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Parameter to know whether LDA should be applied
P_CLASSIFIER - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Parameter for the clustering algorithm
P_CLUSTERER - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the clustering algorithm
P_CLUSTERER_NUM_CENTROIDS - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the number of centroids to be used in the clustering algorithm
P_CLUSTERER_STOP_CRITERION - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the stop criterion to be used in the clustering algorithm
P_COEVOLUTIONARY - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Default parameter base for the problem
P_COMPACTNESS_FS_NORM - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the normalization factor for compactness index
P_COMPACTNESS_INDEX - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the compactness index
P_DEBUG - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
Parameter to activate the debugging logs
P_EVALUATION_MODE - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Parameter to set the evaluation mode
P_FS - Static variable in class ristretto.problem.fs.FSDefaults
Base parameter
P_FS_DATASET - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
Parameter to load the dataset
P_FS_DATASET_CLASS_INDEX - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
Parameter to load the class index for labeled datasets
P_FS_PROBLEM - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
Default parameter base for the problem
P_FS_SUBSET_CROSSOVER - Static variable in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
Base parameter for defaults
P_FS_SUBSET_INDIVIDUAL - Static variable in class ristretto.problem.fs.subset.FSSubsetIndividual
Base parameter
P_FS_SUBSET_MUTATION - Static variable in class ristretto.problem.fs.subset.breed.FSSubsetMutationPipeline
Base parameter for defaults
P_FS_SUBSET_SPECIES - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter base
P_LEXICOGRAPHIC - Static variable in class ristretto.ecjtools.LexicographicFitness
Base parameter for defaults
P_MAX_FEATURE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter for the maximum feature index of individuals
P_MAX_SIZE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter for the maximum size of individuals
P_MAXIMIZE - Static variable in class ristretto.ecjtools.LexicographicFitness
Is higher better?
P_MAXOBJECTIVES - Static variable in class ristretto.ecjtools.LexicographicFitness
Parameter for the maximum fitness values
P_MIN_FEATURE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter for the minimum feature index of individuals
P_MIN_SIZE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter for the minimum size of individuals
P_MINOBJECTIVES - Static variable in class ristretto.ecjtools.LexicographicFitness
Parameter for the minimum fitness values
P_MUTATIONPROB - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter for the mutation probability of individuals
P_N_FEATURES - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
Parameter for the number of features in the problem
P_NFOLDS - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Parameter to set the number of folds (if cross-validation is set)
P_NUMOBJECTIVES - Static variable in class ristretto.ecjtools.LexicographicFitness
Parameter for the number of objectives
P_PARETO_FRONT_FILE - Static variable in class ristretto.ecjtools.MultiObjectiveStatistics
Parameter for the front file
P_SEPARATION_FS_NORM - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the normalization factor for the separation index
P_SEPARATION_INDEX - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Parameter for the separation index
P_SHOULD_SET_CONTEXT - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Parameter to decide whether to include the context or not
P_SHOULD_SET_CONTEXT - Static variable in class tests.testCoevolution.CoevolutionaryMaxOnes
Parameter to decide whether to include the context or not
P_SILENT_FRONT_FILE - Static variable in class ristretto.ecjtools.MultiObjectiveStatistics
Parameter for the silent front file
P_SUBSET - Static variable in class ristretto.problem.fs.subset.FSSubsetDefaults
Base parameter
P_SUPERVISED - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Default parameter base for the problem
P_THRESHOLD - Static variable in class ristretto.ecjtools.LexicographicFitness
Similarity threshold for fitness comparisons
P_TOSS - Static variable in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
Parameter to configure if the second parent should be tossed
P_UNSUPERVISED - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Default parameter base for the problem
P_VALIDATION_PROP - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Parameter for the proportion of samples used for validation
P_VALIDATION_PROP - Static variable in class tests.testLibSVM.TestLibSVM
Parameter for the proportion of samples used for validation
parseGenotype(EvolutionState, LineNumberReader) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Parse a genome from a numbered reader.
partition(Dataset) - Method in class ristretto.jmltools.clustering.ELBG
Partitions the data according to the centroids.
partition(Dataset) - Method in class ristretto.jmltools.clustering.LBG
Partition the data according to the centroids.
PerformanceIndexes - Class in ristretto.jmltools.classification.evaluation
This class implements some performance metrics based on the confusion matrix of a classifier
PerformanceIndexes() - Constructor for class ristretto.jmltools.classification.evaluation.PerformanceIndexes
 
postprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Called after evaluation of a Population to form final Fitness scores for the individuals based on the various performance scores they accumulated during trials
postprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class tests.testCoevolution.CoevolutionaryMaxOnes
Called after evaluation of a Population to form final Fitness scores for the individuals based on the various performance scores they accumulated during trials
preprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Prepare the fitness of individuals belonging to a population (clear trials) before their evaluation
preprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class tests.testCoevolution.CoevolutionaryMaxOnes
Prepare the fitness of individuals belonging to a population (clear trials) before their evaluation
produce(int, int, int, int, Individual[], EvolutionState, int) - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
Produce n individuals from the given subpopulation and put them into inds[start...start+n-1], where n = Min(Max(q,min),max), where q is the "typical" number of individuals the pipeline produces in one shot, and returns n. max must be >= min, and min must be >= 1.
produce(int, int, int, int, Individual[], EvolutionState, int) - Method in class ristretto.problem.fs.subset.breed.FSSubsetMutationPipeline
Produce n individuals from the given subpopulation and put them into inds[start...start+n-1], where n = Min(Max(q,min),max), where q is the "typical" number of individuals the pipeline produces in one shot, and returns n. max must be >= min, and min must be >= 1.
project(Dataset, boolean[]) - Static method in class ristretto.jmltools.MoreDatasetTools
Generates a new dataset from the input data as a projection of some selected features according to mask.
project(Dataset, TreeSet<Integer>) - Static method in class ristretto.jmltools.MoreDatasetTools
Generates a new dataset from the input data as a projection of some selected features according to some selected features.
project(Dataset, RealMatrix) - Static method in class ristretto.jmltools.MoreDatasetTools
Generates a new dataset from the input data as a projection according to the given projection matrix.
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages