A B C D E F G H I K L M N O P R S T U V W Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
P
- P_APPLY_LDA - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Parameter to know whether LDA should be applied
- P_CLASSIFIER - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Parameter for the clustering algorithm
- P_CLUSTERER - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the clustering algorithm
- P_CLUSTERER_NUM_CENTROIDS - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the number of centroids to be used in the clustering algorithm
- P_CLUSTERER_STOP_CRITERION - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the stop criterion to be used in the clustering algorithm
- P_COEVOLUTIONARY - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Default parameter base for the problem
- P_COMPACTNESS_FS_NORM - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the normalization factor for compactness index
- P_COMPACTNESS_INDEX - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the compactness index
- P_DEBUG - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
-
Parameter to activate the debugging logs
- P_EVALUATION_MODE - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Parameter to set the evaluation mode
- P_FS - Static variable in class ristretto.problem.fs.FSDefaults
-
Base parameter
- P_FS_DATASET - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
-
Parameter to load the dataset
- P_FS_DATASET_CLASS_INDEX - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
-
Parameter to load the class index for labeled datasets
- P_FS_PROBLEM - Static variable in class ristretto.problem.fs.subset.FSSubsetProblem
-
Default parameter base for the problem
- P_FS_SUBSET_CROSSOVER - Static variable in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
-
Base parameter for defaults
- P_FS_SUBSET_INDIVIDUAL - Static variable in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Base parameter
- P_FS_SUBSET_MUTATION - Static variable in class ristretto.problem.fs.subset.breed.FSSubsetMutationPipeline
-
Base parameter for defaults
- P_FS_SUBSET_SPECIES - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter base
- P_LEXICOGRAPHIC - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Base parameter for defaults
- P_MAX_FEATURE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter for the maximum feature index of individuals
- P_MAX_SIZE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter for the maximum size of individuals
- P_MAXIMIZE - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Is higher better?
- P_MAXOBJECTIVES - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Parameter for the maximum fitness values
- P_MIN_FEATURE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter for the minimum feature index of individuals
- P_MIN_SIZE - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter for the minimum size of individuals
- P_MINOBJECTIVES - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Parameter for the minimum fitness values
- P_MUTATIONPROB - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter for the mutation probability of individuals
- P_N_FEATURES - Static variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Parameter for the number of features in the problem
- P_NFOLDS - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Parameter to set the number of folds (if cross-validation is set)
- P_NUMOBJECTIVES - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Parameter for the number of objectives
- P_PARETO_FRONT_FILE - Static variable in class ristretto.ecjtools.MultiObjectiveStatistics
-
Parameter for the front file
- P_SEPARATION_FS_NORM - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the normalization factor for the separation index
- P_SEPARATION_INDEX - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Parameter for the separation index
- P_SHOULD_SET_CONTEXT - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Parameter to decide whether to include the context or not
- P_SHOULD_SET_CONTEXT - Static variable in class tests.testCoevolution.CoevolutionaryMaxOnes
-
Parameter to decide whether to include the context or not
- P_SILENT_FRONT_FILE - Static variable in class ristretto.ecjtools.MultiObjectiveStatistics
-
Parameter for the silent front file
- P_SUBSET - Static variable in class ristretto.problem.fs.subset.FSSubsetDefaults
-
Base parameter
- P_SUPERVISED - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Default parameter base for the problem
- P_THRESHOLD - Static variable in class ristretto.ecjtools.LexicographicFitness
-
Similarity threshold for fitness comparisons
- P_TOSS - Static variable in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
-
Parameter to configure if the second parent should be tossed
- P_UNSUPERVISED - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Default parameter base for the problem
- P_VALIDATION_PROP - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Parameter for the proportion of samples used for validation
- P_VALIDATION_PROP - Static variable in class tests.testLibSVM.TestLibSVM
-
Parameter for the proportion of samples used for validation
- parseGenotype(EvolutionState, LineNumberReader) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Parse a genome from a numbered reader.
- partition(Dataset) - Method in class ristretto.jmltools.clustering.ELBG
-
Partitions the data according to the centroids.
- partition(Dataset) - Method in class ristretto.jmltools.clustering.LBG
-
Partition the data according to the centroids.
- PerformanceIndexes - Class in ristretto.jmltools.classification.evaluation
-
This class implements some performance metrics based on the confusion matrix of a classifier
- PerformanceIndexes() - Constructor for class ristretto.jmltools.classification.evaluation.PerformanceIndexes
- postprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Called after evaluation of a Population to form final Fitness scores for the individuals based on the various performance scores they accumulated during trials
- postprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class tests.testCoevolution.CoevolutionaryMaxOnes
-
Called after evaluation of a Population to form final Fitness scores for the individuals based on the various performance scores they accumulated during trials
- preprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Prepare the fitness of individuals belonging to a population (clear trials) before their evaluation
- preprocessPopulation(EvolutionState, Population, boolean[], boolean) - Method in class tests.testCoevolution.CoevolutionaryMaxOnes
-
Prepare the fitness of individuals belonging to a population (clear trials) before their evaluation
- produce(int, int, int, int, Individual[], EvolutionState, int) - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
-
Produce n individuals from the given subpopulation and put them into inds[start...start+n-1], where n = Min(Max(q,min),max), where q is the "typical" number of individuals the pipeline produces in one shot, and returns n. max must be >= min, and min must be >= 1.
- produce(int, int, int, int, Individual[], EvolutionState, int) - Method in class ristretto.problem.fs.subset.breed.FSSubsetMutationPipeline
-
Produce n individuals from the given subpopulation and put them into inds[start...start+n-1], where n = Min(Max(q,min),max), where q is the "typical" number of individuals the pipeline produces in one shot, and returns n. max must be >= min, and min must be >= 1.
- project(Dataset, boolean[]) - Static method in class ristretto.jmltools.MoreDatasetTools
-
Generates a new dataset from the input data as a projection of some selected features according to mask.
- project(Dataset, TreeSet<Integer>) - Static method in class ristretto.jmltools.MoreDatasetTools
-
Generates a new dataset from the input data as a projection of some selected features according to some selected features.
- project(Dataset, RealMatrix) - Static method in class ristretto.jmltools.MoreDatasetTools
-
Generates a new dataset from the input data as a projection according to the given projection matrix.
All Classes All Packages