A B C D E F G H I K L M N O P R S T U V W Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
C
- C - Variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem.ClassifierParameters
-
C Value for SVM
- C_CROSS_VALIDATION - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Cross-validation code the evaluation mode
- C_EVALUATION_DEFAULT - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Default evaluation mode
- C_NFOLDS_DEFAULT - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Default number of folds for cross-validation
- C_VALIDATION_ONLY - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Validation-only code the evaluation mode
- C_VALIDATION_TRAINING - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Validation-training code the evaluation mode
- centroids - Variable in class ristretto.jmltools.clustering.LBG
-
Centroids of the different clusters.
- classDistribution(Instance) - Method in class ristretto.jmltools.classification.NaiveBayes
-
Generate the membership distribution for this instance using this classifier.
- classifierClass - Variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Classifier class
- ClassifierParameters() - Constructor for class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem.ClassifierParameters
- classifierParams - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Classifier parameters
- clone() - Method in class ristretto.ecjtools.LexicographicFitness
-
Clone this fitness.
- clone() - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
-
Clone this pipeline
- clone() - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Returns a clone of this individual
- cluster(Dataset) - Method in class ristretto.jmltools.clustering.ELBG
-
Execute the ELBG clustering algorithm on the data set that is provided.
- cluster(Dataset) - Method in class ristretto.jmltools.clustering.KMedians
-
Execute the KMedians clustering algorithm on the data set that is provided.
- cluster(Dataset) - Method in class ristretto.jmltools.clustering.LBG
-
Execute the LBG clustering algorithm on the data set that is provided.
- clustererClass - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Clustering algorithm
- clustererMinNumCentroids - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Minimum number of centroids for the clustering algorithm
- clustererNumCentroids - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Number of centroids to be used in the clustering algorithm
- clustererStopCriterion - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Stop criterion to be used in the clustering algorithm
- CoevolutionaryMaxOnes - Class in tests.testCoevolution
-
Dummy test for coevolutionary problems.
- CoevolutionaryMaxOnes() - Constructor for class tests.testCoevolution.CoevolutionaryMaxOnes
- CoevolutionaryStatistics - Class in ristretto.ecjtools
-
Coevolutionary statistics.
- CoevolutionaryStatistics() - Constructor for class ristretto.ecjtools.CoevolutionaryStatistics
- combineFeatures(EvolutionState, Individual[]) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Combine the features of the individuals from all subpopulations
- combineFeatures(EvolutionState, Individual, Individual[]) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Combine the features of and individual with all the features selected in its context
- compactnessIndexClass - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Compactness index
- compactnessNormMethodName - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Normalization factor for compactness index
- compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.DaviesBouldin
-
Compare the two scores according to the criterion in the implementation.
- compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.DunnIndex
-
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
- compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.FarthestCentroids
-
Compares the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
- compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.MaxClusterDiameter
-
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
- compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.MinFarthestCentroid
-
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
- compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.OverallDeviation
-
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
- constructClassifier() - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Construct the classifier
- contextIsBetterThan(Fitness) - Method in class ristretto.ecjtools.LexicographicFitness
-
Given another Fitness, returns true if the trial which produced my current context is "better" in fitness than the trial which produced his current context, and thus should be retained in lieu of his.
- countNonEmptyClusters(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.CVIFSNormalizer
-
Check if there are empty clusters.
- CVIFSNormalizer - Class in ristretto.jmltools.clustering.evaluation
-
This class allows to normalize CVI values for Feature Selection problems.
- CVIFSNormalizer(int, Dataset[]) - Constructor for class ristretto.jmltools.clustering.evaluation.CVIFSNormalizer
-
Construct the normalizer
All Classes All Packages