A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages

C

C - Variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem.ClassifierParameters
C Value for SVM
C_CROSS_VALIDATION - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Cross-validation code the evaluation mode
C_EVALUATION_DEFAULT - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Default evaluation mode
C_NFOLDS_DEFAULT - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Default number of folds for cross-validation
C_VALIDATION_ONLY - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Validation-only code the evaluation mode
C_VALIDATION_TRAINING - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Validation-training code the evaluation mode
centroids - Variable in class ristretto.jmltools.clustering.LBG
Centroids of the different clusters.
classDistribution(Instance) - Method in class ristretto.jmltools.classification.NaiveBayes
Generate the membership distribution for this instance using this classifier.
classifierClass - Variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Classifier class
ClassifierParameters() - Constructor for class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem.ClassifierParameters
 
classifierParams - Static variable in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Classifier parameters
clone() - Method in class ristretto.ecjtools.LexicographicFitness
Clone this fitness.
clone() - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
Clone this pipeline
clone() - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Returns a clone of this individual
cluster(Dataset) - Method in class ristretto.jmltools.clustering.ELBG
Execute the ELBG clustering algorithm on the data set that is provided.
cluster(Dataset) - Method in class ristretto.jmltools.clustering.KMedians
Execute the KMedians clustering algorithm on the data set that is provided.
cluster(Dataset) - Method in class ristretto.jmltools.clustering.LBG
Execute the LBG clustering algorithm on the data set that is provided.
clustererClass - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Clustering algorithm
clustererMinNumCentroids - Static variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Minimum number of centroids for the clustering algorithm
clustererNumCentroids - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Number of centroids to be used in the clustering algorithm
clustererStopCriterion - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Stop criterion to be used in the clustering algorithm
CoevolutionaryMaxOnes - Class in tests.testCoevolution
Dummy test for coevolutionary problems.
CoevolutionaryMaxOnes() - Constructor for class tests.testCoevolution.CoevolutionaryMaxOnes
 
CoevolutionaryStatistics - Class in ristretto.ecjtools
Coevolutionary statistics.
CoevolutionaryStatistics() - Constructor for class ristretto.ecjtools.CoevolutionaryStatistics
 
combineFeatures(EvolutionState, Individual[]) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Combine the features of the individuals from all subpopulations
combineFeatures(EvolutionState, Individual, Individual[]) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Combine the features of and individual with all the features selected in its context
compactnessIndexClass - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Compactness index
compactnessNormMethodName - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Normalization factor for compactness index
compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.DaviesBouldin
Compare the two scores according to the criterion in the implementation.
compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.DunnIndex
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.FarthestCentroids
Compares the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.MaxClusterDiameter
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.MinFarthestCentroid
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
compareScore(double, double) - Method in class ristretto.jmltools.clustering.evaluation.OverallDeviation
Compare the two scores according to the criterion in the implementation Some criterions should be maximized, others should be minimized.
constructClassifier() - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Construct the classifier
contextIsBetterThan(Fitness) - Method in class ristretto.ecjtools.LexicographicFitness
Given another Fitness, returns true if the trial which produced my current context is "better" in fitness than the trial which produced his current context, and thus should be retained in lieu of his.
countNonEmptyClusters(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.CVIFSNormalizer
Check if there are empty clusters.
CVIFSNormalizer - Class in ristretto.jmltools.clustering.evaluation
This class allows to normalize CVI values for Feature Selection problems.
CVIFSNormalizer(int, Dataset[]) - Constructor for class ristretto.jmltools.clustering.evaluation.CVIFSNormalizer
Construct the normalizer
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages