A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages

S

score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.DaviesBouldin
Return the score the current clusterer obtains on the dataset
score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.DunnIndex
Return the score the current clusterer obtains on the dataset
score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.FarthestCentroids
Return the score the current clusterer obtains on the dataset
score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.MaxClusterDiameter
Return the score the current clusterer obtains on the dataset
score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.MinFarthestCentroid
Return the score the current clusterer obtains on the dataset
score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.OverallDeviation
Return the score the current clusterer obtains on the dataset
sensitivity(Map<Object, PerformanceMeasure>, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
This method implements sensitivity of a classification.
sensitivity(Classifier, Dataset, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
This method implements sensitivity of a classification.
separationIndexClass - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Separation index
separationNormMethodName - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Normalization factor for the separation index
setGenome(Object) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Set the genome.
setObjectives(EvolutionState, double[]) - Method in class ristretto.ecjtools.LexicographicFitness
Set new values for the objectives
setup(EvolutionState, Parameter) - Method in class ristretto.ecjtools.CoevolutionaryStatistics
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base.
setup(EvolutionState, Parameter) - Method in class ristretto.ecjtools.LexicographicFitness
Set up.
setup(EvolutionState, Parameter) - Method in class ristretto.ecjtools.MultiObjectiveStatistics
Set up the statistics by reading it from the parameters stored in state, built off of the parameter base base.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
Set up the pipeline.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Set up this individual.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.FSSubsetProblem
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.FSSubsetSpecies
Set up the species.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
Sets up the problem by reading it from the parameters stored in state, built off of the parameter base base.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
Sets up the problem by reading it from the parameters stored in state, built off of the parameter base base.
setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base
setup(EvolutionState, Parameter) - Method in class tests.testCoevolution.CoevolutionaryMaxOnes
Sets up the problem by reading it from the parameters stored in state, built off of the parameter base base.
setup(EvolutionState, Parameter) - Method in class tests.testLibSVM.TestLibSVM
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base.
silentFront - Variable in class ristretto.ecjtools.MultiObjectiveStatistics
Silent front
size() - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
Return the number of selected features
specificity(Map<Object, PerformanceMeasure>, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
This method implements specificity of a classification.
specificity(Classifier, Dataset, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
This method implements specificity of a classification.
split(Dataset, double) - Static method in class ristretto.jmltools.MoreDatasetTools
Extracts a proportion of samples ramdomly from a original dataset and returns them as a new dataset.
stopCriterion - Variable in class ristretto.jmltools.clustering.LBG
Stop criterion
A B C D E F G H I K L M N O P R S T U V W Z 
All Classes All Packages