A B C D E F G H I K L M N O P R S T U V W Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
S
- score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.DaviesBouldin
-
Return the score the current clusterer obtains on the dataset
- score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.DunnIndex
-
Return the score the current clusterer obtains on the dataset
- score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.FarthestCentroids
-
Return the score the current clusterer obtains on the dataset
- score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.MaxClusterDiameter
-
Return the score the current clusterer obtains on the dataset
- score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.MinFarthestCentroid
-
Return the score the current clusterer obtains on the dataset
- score(Dataset[]) - Method in class ristretto.jmltools.clustering.evaluation.OverallDeviation
-
Return the score the current clusterer obtains on the dataset
- sensitivity(Map<Object, PerformanceMeasure>, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
-
This method implements sensitivity of a classification.
- sensitivity(Classifier, Dataset, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
-
This method implements sensitivity of a classification.
- separationIndexClass - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Separation index
- separationNormMethodName - Variable in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Normalization factor for the separation index
- setGenome(Object) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Set the genome.
- setObjectives(EvolutionState, double[]) - Method in class ristretto.ecjtools.LexicographicFitness
-
Set new values for the objectives
- setup(EvolutionState, Parameter) - Method in class ristretto.ecjtools.CoevolutionaryStatistics
-
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base.
- setup(EvolutionState, Parameter) - Method in class ristretto.ecjtools.LexicographicFitness
-
Set up.
- setup(EvolutionState, Parameter) - Method in class ristretto.ecjtools.MultiObjectiveStatistics
-
Set up the statistics by reading it from the parameters stored in state, built off of the parameter base base.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.breed.FSSubsetCrossoverPipeline
-
Set up the pipeline.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Set up this individual.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.FSSubsetProblem
-
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Set up the species.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedCoevolutionaryProblem
-
Sets up the problem by reading it from the parameters stored in state, built off of the parameter base base.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.supervised.FSSubsetSupervisedProblem
-
Sets up the problem by reading it from the parameters stored in state, built off of the parameter base base.
- setup(EvolutionState, Parameter) - Method in class ristretto.problem.fs.subset.unsupervised.FSSubsetUnsupervisedProblem
-
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base
- setup(EvolutionState, Parameter) - Method in class tests.testCoevolution.CoevolutionaryMaxOnes
-
Sets up the problem by reading it from the parameters stored in state, built off of the parameter base base.
- setup(EvolutionState, Parameter) - Method in class tests.testLibSVM.TestLibSVM
-
Set up the problem by reading it from the parameters stored in state, built off of the parameter base base.
- silentFront - Variable in class ristretto.ecjtools.MultiObjectiveStatistics
-
Silent front
- size() - Method in class ristretto.problem.fs.subset.FSSubsetIndividual
-
Return the number of selected features
- specificity(Map<Object, PerformanceMeasure>, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
-
This method implements specificity of a classification.
- specificity(Classifier, Dataset, Object) - Static method in class ristretto.jmltools.classification.evaluation.PerformanceIndexes
-
This method implements specificity of a classification.
- split(Dataset, double) - Static method in class ristretto.jmltools.MoreDatasetTools
-
Extracts a proportion of samples ramdomly from a original dataset and returns them as a new dataset.
- stopCriterion - Variable in class ristretto.jmltools.clustering.LBG
-
Stop criterion
All Classes All Packages