A B C D E F G H I K L M N O P R S T U V W Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
M
- main(String[]) - Static method in class ristretto.tools.DatasetSplitter
-
Split a dataset into a training and test datasets given a test proportion, that is, the proportion of data reserved to the test dataset.
- main(String[]) - Static method in class ristretto.tools.FSCrossValidator
-
Test the results of a Feature Selector via cross-validation
- main(String[]) - Static method in class ristretto.tools.FSErrorRateValidator
-
Obtain the training and test error rates of the results of a Feature Selector
- main(String[]) - Static method in class ristretto.tools.FSKappaValidator
-
Obtain the training and test Kappa indices of the results of a Feature Selector
- main(String[]) - Static method in class ristretto.tools.FSParetoFrontAnalyzer
-
Obtain the relevance of each feature in the whole Pareto front.
- main(String[]) - Static method in class ristretto.tools.FSRanker
-
Translate a relevances file into a ranks file
- main(String[]) - Static method in class ristretto.tools.FSRelevancesAnalyzer
-
Gather the relevances from several experiments
- main(String[]) - Static method in class ristretto.tools.FSSensitivityValidator
-
Obtain the training and test sensitivities of the results of a Feature Selector
- main(String[]) - Static method in class ristretto.tools.FSSpecificityValidator
-
Obtain the training and test specificities of the results of a Feature Selector
- main(String[]) - Static method in class ristretto.tools.FSStabilitySpearmanScorer
-
Computes the Spearman score achieved by a set of experiments
- main(String[]) - Static method in class ristretto.tools.KolmogorovSmirnovNormalityTest
-
Applies a Kolmogorov-Smirnov normality test to a set of values and prints the p-value
- main(String[]) - Static method in class ristretto.tools.RandomFeatureAdder
-
Append some random features to a training dataset, and also to a test dataset if provided
- main(String[]) - Static method in class tests.testCVI.TestCVI
-
Test a separation and a compactness CVI
- main(String[]) - Static method in class tests.testDirectLDA.TestDirectLDA
-
Test the direct LDA method
- main(String[]) - Static method in class tests.testNaiveBayes.TestNaiveBayes
-
Test Naive Bayes as a wrapper classifier
- main(String[]) - Static method in class tests.testNormalization.TestNormalization
-
Test of the normalization function of the MoreDatasetTools class
- main(String[]) - Static method in class tests.testSplit.TestSplit
-
Test of the split function of the MoreDatasetTools class.
- mask - Variable in class ristretto.jmltools.distance.FSAbstractDistance
-
Mask for the selected attributes
- MaxClusterDiameter - Class in ristretto.jmltools.clustering.evaluation
-
This is a cluster cohesion index based on the cohesion criterion used by the Dunn index [1].
- MaxClusterDiameter() - Constructor for class ristretto.jmltools.clustering.evaluation.MaxClusterDiameter
-
Construct a new evaluator that will use the Euclidean distance to measure the errors.
- MaxClusterDiameter(DistanceMeasure) - Constructor for class ristretto.jmltools.clustering.evaluation.MaxClusterDiameter
-
Construct a new evaluator that will use the supplied distance metric to measure the errors
- maxDistance() - Method in class ristretto.jmltools.clustering.evaluation.CVIFSNormalizer
-
Return the maximum distance between two data in a normalized dataset
- maxFeature - Variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
What's the largest feature index to be used?
- maximize - Variable in class ristretto.ecjtools.LexicographicFitness
-
Maximization.
- maxObjective - Variable in class ristretto.ecjtools.LexicographicFitness
-
Desired maximum fitness values.
- maxSize - Variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
What's the largest legal genome?
- measure(Instance, Instance) - Method in class ristretto.jmltools.distance.FSEuclideanDistance
-
Calculate the Euclidean distance as the sum of the absolute differences of their coordinates.
- measure(Instance, Instance) - Method in class ristretto.jmltools.distance.FSManhattanDistance
-
Calculate the Manhattan distance as the sum of the absolute differences of their coordinates.
- MinFarthestCentroid - Class in ristretto.jmltools.clustering.evaluation
-
This index estimates the separation of clusters as the minimum of the max distance from a centroid to all the remaining centroids.
- MinFarthestCentroid() - Constructor for class ristretto.jmltools.clustering.evaluation.MinFarthestCentroid
-
Construct a new evaluator that will use the Euclidean distance to measure the errors.
- MinFarthestCentroid(DistanceMeasure) - Constructor for class ristretto.jmltools.clustering.evaluation.MinFarthestCentroid
-
Construct a new evaluator that will use the supplied distance metric to measure the errors
- minFeature - Variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
What's the smallest feature index to be used?
- minObjective - Variable in class ristretto.ecjtools.LexicographicFitness
-
Desired minimum fitness values.
- minSize - Variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
What's the smallest legal genome?
- MoreDatasetTools - Class in ristretto.jmltools
-
Add several tools to those provided by Java-ML.
- MoreDatasetTools() - Constructor for class ristretto.jmltools.MoreDatasetTools
- MultiObjectiveStatistics - Class in ristretto.ecjtools
-
MultiObjective Statistics.
- MultiObjectiveStatistics() - Constructor for class ristretto.ecjtools.MultiObjectiveStatistics
- mutationProb - Variable in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Probability that a gene will mutate, per gene.
- mutationProbability() - Method in class ristretto.problem.fs.subset.FSSubsetSpecies
-
Return the mutation probability
All Classes All Packages