culebra.trainer.ea.SimpleEA class

class SimpleEA(solution_cls: type[Individual], species: Species, fitness_function: FitnessFunction, max_num_iters: int | None = None, custom_termination_func: Callable[[SinglePopEA], bool] | None = None, pop_size: int | None = None, crossover_func: Callable[[Individual, Individual], tuple[Individual, Individual]] | None = None, mutation_func: Callable[[Individual, float], tuple[Individual]] | None = None, selection_func: Callable[[list[Individual], int, Any], list[Individual]] | None = None, crossover_prob: float | None = None, mutation_prob: float | None = None, gene_ind_mutation_prob: float | None = None, selection_func_params: dict[str, Any] | None = None, checkpoint_activation: bool | None = None, checkpoint_freq: int | None = None, checkpoint_filename: str | None = None, verbosity: bool | None = None, random_seed: int | None = None)

Bases: SinglePopEA

Create a new single-population evolutionary trainer.

Parameters:
Raises:
  • TypeError – If any argument is not of the appropriate type

  • ValueError – If any argument has an incorrect value

Class attributes

SimpleEA.objective_stats = {'Avg': <function mean>, 'Max': <function max>, 'Min': <function min>, 'Std': <function std>}

Statistics calculated for each objective.

SimpleEA.stats_names = ('Iter', 'NEvals')

Statistics calculated each iteration.

Class methods

classmethod SimpleEA.load(filename: str) Base

Load a serialized object from a file.

Parameters:

filename (str) – The file name.

Returns:

The loaded object

Raises:

Properties

property SimpleEA.checkpoint_activation: bool

Checkpointing activation.

Returns:

True if checkpointing is active, or False otherwise

Return type:

bool

Setter:

Modify the checkpointing activation

Parameters:

value (bool) – New value for the checkpoint activation. If set to None, _default_checkpoint_activation is chosen

Raises:

TypeError – If value is not a boolean value

property SimpleEA.checkpoint_filename: str

Checkpoint file path.

Return type:

str

Setter:

Modify the checkpoint file path

Parameters:

value (str) – New value for the checkpoint file path. If set to None, _default_checkpoint_filename is chosen

Raises:
property SimpleEA.checkpoint_freq: int

Checkpoint frequency.

Return type:

int

Setter:

Modify the checkpoint frequency

Parameters:

value (int) – New value for the checkpoint frequency. If set to None, _default_checkpoint_freq is chosen

Raises:
property SimpleEA.container: Trainer | None

Container of this trainer.

The trainer container is only used by distributed trainers. For the rest of trainers defaults to None.

Return type:

Trainer

Setter:

Set a new value for container of this trainer

Parameters:

value (Trainer) – New value for the container or None

Raises:

TypeError – If value is not a valid trainer

property SimpleEA.crossover_func: Callable[[Individual, Individual], tuple[Individual, Individual]]

Crossover function.

Return type:

Callable

Setter:

Set a new crossover function

Parameters:

func (Callable) – The new crossover function. If omitted, _default_crossover_func is chosen

Raises:

TypeError – If func is not callable

property SimpleEA.crossover_prob: float

Crossover probability.

Return type:

float

Setter:

Set a new crossover probability

Parameters:

prob (float) – The new probability. If omitted, _default_crossover_prob is chosen

Raises:
property SimpleEA.current_iter: int | None

Current iteration.

Returns:

The current iteration or None if the search has not been done yet

Return type:

int

property SimpleEA.custom_termination_func: Callable[[Trainer], bool] | None

Custom termination criterion.

Although the trainer will always stop when the max_num_iters are reached, a custom termination criterion can be set to detect convergente and stop the trainer earlier. This custom termination criterion must be a function which receives the trainer as its unique argument and returns a boolean value, True if the search should terminate or False otherwise.

If more than one arguments are needed to define the termination condition, functools.partial() can be used:

from functools import partial

def my_crit(trainer, max_iters):
    if trainer.current_iter < max_iters:
        return False
    return True

trainer.custom_termination_func = partial(my_crit, max_iters=10)
Setter:

Set a new custom termination criterion

Parameters:

func (Callable) – The new custom termination criterion. If set to None, the default termination criterion is used

Raises:

TypeError – If func is not callable

property SimpleEA.fitness_function: FitnessFunction

Training fitness function.

Return type:

FitnessFunction

Setter:

Set a new fitness function

Parameters:

func (FitnessFunction) – The new training fitness function

Raises:

TypeError – If func is not a valid fitness function

property SimpleEA.gene_ind_mutation_prob: float

Gene independent mutation probability.

Return type:

float

Setter:

Set a new gene independent mutation probability

Parameters:

prob (float) – The new probability. If omitted, _default_gene_ind_mutation_prob is chosen

Raises:
property SimpleEA.index: int

Trainer index.

The trainer index is only used by distributed trainers. For the rest of trainers _default_index is used.

Return type:

int

Setter:

Set a new value for trainer index.

Parameters:

value (int) – New value for the trainer index. If set to None, _default_index is chosen

Raises:
property SimpleEA.logbook: Logbook | None

Trainer logbook.

Returns:

A logbook with the statistics of the search or None if the search has not been done yet

Return type:

Logbook

property SimpleEA.max_num_iters: int

Maximum number of iterations.

Return type:

int

Setter:

Set a new value for the maximum number of iterations

Parameters:

value (int) – The new maximum number of iterations. If set to None, the default maximum number of iterations, _default_max_num_iters, is chosen

Raises:
property SimpleEA.mutation_func: Callable[[Individual, float], tuple[Individual]]

Mutation function.

Return type:

Callable

Setter:

Set a new mutation function

Parameters:

func (Callable) – The new mutation function. If omitted, _default_mutation_func is chosen

Raises:

TypeError – If func is not callable

property SimpleEA.mutation_prob: float

Mutation probability.

Return type:

float

Setter:

Set a new mutation probability

Parameters:

prob (float) – The new probability. If omitted, _default_mutation_prob is chosen

Raises:
property SimpleEA.num_evals: int | None

Number of evaluations performed while training.

Returns:

The number of evaluations or None if the search has not been done yet

Return type:

int

property SimpleEA.pop: list[Individual] | None

Population.

Return type:

list[Individual]

property SimpleEA.pop_size: int

Population size.

Return type:

int

Setter:

Set a new population size

Parameters:

size (int) – The new population size. If omitted, _default_pop_size is chosen

Raises:
property SimpleEA.random_seed: int

Random seed used by this trainer.

Return type:

int

Setter:

Set a new value for the random seed

Parameters:

value (int) – New value

property SimpleEA.representatives: list[list[Solution | None]] | None

Representatives of the other species.

Only used by cooperative trainers. If the trainer does not use representatives, None is returned.

Return type:

list[list[Solution]]

property SimpleEA.runtime: float | None

Training runtime.

Returns:

The training runtime or None if the search has not been done yet.

Return type:

float

property SimpleEA.selection_func: Callable[[list[Individual], int, Any], list[Individual]]

Selection function.

Return type:

Callable

Setter:

Set a new selection function

Parameters:

func (Callable) – The new selection function. If omitted, _default_selection_func is chosen

Raises:

TypeError – If func is not callable

property SimpleEA.selection_func_params: dict[str, Any]

Parameters of the selection function.

Return type:

dict

Setter:

Set new parameters for the selection function

Parameters:

params (dict) – The new parameters. If omitted, _default_selection_func_params is chosen

Raises:

TypeError – If params is not a dict

property SimpleEA.solution_cls: type[Solution]

Solution class.

Return type:

type[Solution]

Setter:

Set a new solution class

Parameters:

cls (type[Solution]) – The new class

Raises:

TypeError – If cls is not valid solution class

property SimpleEA.species: Species

Species.

Return type:

Species

Setter:

Set a new species

Parameters:

value (Species) – The new species

Raises:

TypeError – If value is not a valid species

property SimpleEA.verbosity: bool

Verbosity of this trainer.

Return type:

bool

Setter:

Set a new value for the verbosity

Parameters:

value (bool) – The verbosity. If set to None, _default_verbosity is chosen

Raises:

TypeError – If value is not boolean

Private properties

property SimpleEA._default_checkpoint_activation: bool

Default checkpointing activation.

Returns:

DEFAULT_CHECKPOINT_ACTIVATION

Return type:

bool

property SimpleEA._default_checkpoint_filename: str

Default checkpointing file name.

Returns:

DEFAULT_CHECKPOINT_FILENAME

Return type:

str

property SimpleEA._default_checkpoint_freq: int

Default checkpointing frequency.

Returns:

DEFAULT_CHECKPOINT_FREQ

Return type:

int

property SimpleEA._default_crossover_func: Callable[[Individual, Individual], tuple[Individual, Individual]]

Default crossover function.

Returns:

The crossover() method of solution_cls

Return type:

Callable

property SimpleEA._default_crossover_prob: float

Default crossover probability.

Returns:

DEFAULT_CROSSOVER_PROB

Return type:

float

property SimpleEA._default_gene_ind_mutation_prob: float

Default gene independent mutation probability.

Returns:

DEFAULT_GENE_IND_MUTATION_PROB

Return type:

float

property SimpleEA._default_index: int

Default index.

Returns:

DEFAULT_INDEX

Return type:

int

property SimpleEA._default_max_num_iters: int

Default maximum number of iterations.

Returns:

DEFAULT_MAX_NUM_ITERS

Return type:

int

property SimpleEA._default_mutation_func: Callable[[Individual, float], tuple[Individual]]

Default mutation function.

Returns:

The mutate() method of solution_cls

Return type:

Callable

property SimpleEA._default_mutation_prob: float

Default mutation probability.

Returns:

DEFAULT_MUTATION_PROB

Return type:

float

property SimpleEA._default_pop_size: int

Default population size.

Returns:

DEFAULT_POP_SIZE

Return type:

int

property SimpleEA._default_selection_func: Callable[[list[Individual], int, Any], list[Individual]]

Default selection function.

Returns:

DEFAULT_SELECTION_FUNC

Return type:

Callable

property SimpleEA._default_selection_func_params: dict[str, Any]

Parameters of the default selection function.

Returns:

DEFAULT_SELECTION_FUNC_PARAMS

Return type:

float

property SimpleEA._default_verbosity: bool

Default verbosity.

Returns:

DEFAULT_VERBOSITY

Return type:

bool

Methods

SimpleEA.best_representatives() list[list[Solution]] | None

Return a list of representatives from each species.

Only used for cooperative trainers.

Returns:

A list of representatives lists if the trainer is cooperative or None in other cases.

Return type:

list[list[Solution]]

SimpleEA.best_solutions() tuple[HallOfFame]

Get the best solutions found for each species.

Returns:

One Hall of Fame for each species

Return type:

tuple[HallOfFame]

SimpleEA.dump(filename: str) None

Serialize this object and save it to a file.

Parameters:

filename (str) – The file name.

Raises:
SimpleEA.evaluate(sol: Solution, fitness_func: FitnessFunction | None = None, index: int | None = None, representatives: Sequence[Sequence[Solution | None]] | None = None) None

Evaluate one solution.

Its fitness will be modified according with the fitness function results. Besides, if called during training, the number of evaluations will be also updated.

Parameters:
  • sol (Solution) – The solution

  • fitness_func (FitnessFunction) – The fitness function. If omitted, the default training fitness function (fitness_function) is used

  • index (int) – Index where sol should be inserted in the representatives sequence to form a complete solution for the problem. If omitted, index is used

  • representatives (Sequence[Sequence[Solution]]) – Sequence of representatives of other species or None (if no representatives are needed to evaluate sol). If omitted, the current value of representatives is used

SimpleEA.reset() None

Reset the trainer.

Delete the state of the trainer (with _reset_state()) and also all the internal data structures needed to perform the search (with _reset_internals()).

This method should be invoqued each time a hyper parameter is modified.

SimpleEA.test(best_found: Sequence[HallOfFame], fitness_func: FitnessFunction | None = None, representatives: Sequence[Sequence[Solution]] | None = None) None

Apply the test fitness function to the solutions found.

Update the solutions in best_found with their test fitness.

Parameters:
Raises:
  • TypeError – If any parameter has a wrong type

  • ValueError – If any parameter has an invalid value.

SimpleEA.train(state_proxy: DictProxy | None = None) None

Perform the training process.

Parameters:

state_proxy (DictProxy) – dictionary proxy to copy the output state of the trainer procedure. Only used if train is executed within a multiprocess.Process. Defaults to None

Private methods

SimpleEA._default_termination_func() bool

Default termination criterion.

Returns:

True if max_num_iters iterations have been run

Return type:

bool

SimpleEA._do_iteration() None

Implement an iteration of the search process.

In this case, the simplest evolutionary algorithm, as presented in chapter 7 of [Back2000], is implemented.

[Back2000]

T. Back, D. Fogel and Z. Michalewicz, eds. Evolutionary Computation 1: Basic Algorithms and Operators, CRC Press, 2000.

SimpleEA._do_iteration_stats() None

Perform the iteration stats.

SimpleEA._evaluate_pop(pop: list[Individual]) None

Evaluate the individuals of pop that have an invalid fitness.

Parameters:

pop (list[Individual]) – A population

SimpleEA._finish_iteration() None

Finish an iteration.

Finish the iteration metrics (number of evaluations, execution time) after each iteration is run.

Finish the search process.

This method is called after the search has finished. It can be overridden to perform any treatment of the solutions found.

SimpleEA._generate_initial_pop() None

Generate the initial population.

The population is filled with random generated individuals.

SimpleEA._get_state() dict[str, Any]

Return the state of this trainer.

Overridden to add the current population to the trainer’s state.

Getter:

Return the state

Setter:

Set a new state

Return type:

dict

SimpleEA._init_internals() None

Set up the trainer internal data structures to start searching.

Overridden to create and initialize the Deap’s Toolbox.

SimpleEA._init_representatives() None

Init the representatives of the other species.

Only used for cooperative approaches, which need representatives of all the species to form a complete solution for the problem. Cooperative subclasses of the Trainer class should override this method to get the representatives of the other species initialized.

Init the search process.

Initialize the state of the trainer (with _init_state()) and all the internal data structures needed (with _init_internals()) to perform the search.

SimpleEA._init_state() None

Init the trainer state.

If there is any checkpoint file, the state is initialized from it with the _load_state() method. Otherwise a new initial state is generated with the _new_state() method.

SimpleEA._load_state() None

Load the state of the last checkpoint.

Raises:

Exception – If the checkpoint file can’t be loaded

SimpleEA._new_state() None

Generate a new trainer state.

Overridden to fill the population with evaluated random individuals.

SimpleEA._postprocess_iteration() None

Postprocess after doing the iteration.

Subclasses should override this method to make any postprocessment after performing an iteration.

SimpleEA._preprocess_iteration() None

Preprocess before doing the iteration.

Subclasses should override this method to make any preprocessment before performing an iteration.

SimpleEA._reset_internals() None

Reset the internal structures of the trainer.

Overridden to reset the Deap’s Toolbox.

SimpleEA._reset_state() None

Reset the trainer state.

Overridden to reset the initial population.

SimpleEA._save_state() None

Save the state at a new checkpoint.

Raises:

Exception – If the checkpoint file can’t be written

Apply the search algorithm.

Execute the trainer until the termination condition is met. Each iteration is composed by the following steps:

SimpleEA._set_cooperative_fitness(sol: Solution, fitness_trials_values: [Sequence[tuple[float]]]) None

Estimate a solution fitness from multiple evaluation trials.

Applies an average of the fitness trials values. Trainers requiring another estimation should override this method.

Parameters:
  • sol (Solution) – The solution

  • fitness_trials_values (Sequence[tuple[float]]) – Sequence of fitness trials values. Each trial should be obtained with a different context in a cooperative trainer approach.

SimpleEA._set_state(state: dict[str, Any]) None

Set the state of this trainer.

Overridden to add the current population to the trainer’s state.

Parameters:

state (dict) – The last loaded state

SimpleEA._start_iteration() None

Start an iteration.

Prepare the iteration metrics (number of evaluations, execution time) before each iteration is run.

SimpleEA._termination_criterion() bool

Control the search termination.

Returns:

True if either the default termination criterion or a custom termination criterion is met. The default termination criterion is implemented by the _default_termination_func() method. Another custom termination criterion can be set with custom_termination_func method.

Return type:

bool