culebra.trainer.ea.abc.HomogeneousEA class¶
- class HomogeneousEA(solution_cls: type[Individual], species: Species, fitness_function: FitnessFunction, max_num_iters: int | None = None, custom_termination_func: Callable[[HomogeneousEA], bool] | None = None, pop_size: int | None = None, crossover_func: Callable[[Individual, Individual], tuple[Individual, Individual]] | None = None, mutation_func: Callable[[Individual, float], tuple[Individual]] | None = None, selection_func: Callable[[list[Individual], int, Any], list[Individual]] | None = None, crossover_prob: float | None = None, mutation_prob: float | None = None, gene_ind_mutation_prob: float | None = None, selection_func_params: dict[str, Any] | None = None, checkpoint_activation: bool | None = None, checkpoint_freq: int | None = None, checkpoint_filename: str | None = None, verbosity: bool | None = None, random_seed: int | None = None)¶
Bases:
SingleSpeciesTrainerCreate a new homogeneous evolutionary trainer.
- Parameters:
solution_cls (type[Individual]) – The individual class
species (Species) – The species for all the individuals
fitness_function (FitnessFunction) – The training fitness function
max_num_iters (int) – Maximum number of iterations. If omitted,
_default_max_num_iterswill be used. Defaults toNonecustom_termination_func (Callable) – Custom termination criterion. If omitted,
_default_termination_func()is used. Defaults toNonepop_size (int) – The population size. If omitted,
_default_pop_sizeis used. Defaults toNonecrossover_func (Callable) – The crossover function. If omitted,
_default_crossover_funcis used. Defaults toNonemutation_func (Callable) – The mutation function. If omitted,
_default_mutation_funcis used. Defaults toNoneselection_func (Callable) – The selection function. If omitted,
_default_selection_funcis used. Defaults toNonecrossover_prob (float) – The crossover probability. If omitted,
_default_crossover_probis used. Defaults toNonemutation_prob (float) – The mutation probability. If omitted,
_default_mutation_probis used. Defaults toNonegene_ind_mutation_prob (float) – The gene independent mutation probability. If omitted,
_default_gene_ind_mutation_probis used. Defaults toNoneselection_func_params (dict) – The parameters for the selection function. If omitted,
_default_selection_func_paramsis used. Defaults toNonecheckpoint_activation (bool) – Checkpoining activation. If omitted,
_default_checkpoint_activationwill be used. Defaults toNonecheckpoint_freq (int) – The checkpoint frequency. If omitted,
_default_checkpoint_freqwill be used. Defaults toNonecheckpoint_filename (str) – The checkpoint file path. If omitted,
_default_checkpoint_filenamewill be used. Defaults toNoneverbosity (bool) – The verbosity. If omitted,
_default_verbositywill be used. Defaults toNone
- Raises:
TypeError – If any argument is not of the appropriate type
ValueError – If any argument has an incorrect value
Class attributes¶
- HomogeneousEA.objective_stats = {'Avg': <function mean>, 'Max': <function max>, 'Min': <function min>, 'Std': <function std>}¶
Statistics calculated for each objective.
- HomogeneousEA.stats_names = ('Iter', 'NEvals')¶
Statistics calculated each iteration.
Class methods¶
- classmethod HomogeneousEA.load(filename: str) Base¶
Load a serialized object from a file.
- Parameters:
filename (str) – The file name.
- Returns:
The loaded object
- Raises:
TypeError – If filename is not a valid file name
ValueError – If the filename extension is not
SERIALIZED_FILE_EXTENSION
Properties¶
- property HomogeneousEA.checkpoint_filename: str¶
Checkpoint file path.
- Return type:
- Setter:
Modify the checkpoint file path
- Parameters:
value (str) – New value for the checkpoint file path. If set to
None,_default_checkpoint_filenameis chosen- Raises:
TypeError – If value is not a valid file name
ValueError – If the value extension is not
SERIALIZED_FILE_EXTENSION
- property HomogeneousEA.checkpoint_freq: int¶
Checkpoint frequency.
- Return type:
- Setter:
Modify the checkpoint frequency
- Parameters:
value (int) – New value for the checkpoint frequency. If set to
None,_default_checkpoint_freqis chosen- Raises:
TypeError – If value is not an integer
ValueError – If value is not a positive number
- property HomogeneousEA.container: Trainer | None¶
Container of this trainer.
The trainer container is only used by distributed trainers. For the rest of trainers defaults to
None.
- property HomogeneousEA.crossover_func: Callable[[Individual, Individual], tuple[Individual, Individual]]¶
Crossover function.
- Return type:
- Setter:
Set a new crossover function
- Parameters:
func (Callable) – The new crossover function. If omitted,
_default_crossover_funcis chosen- Raises:
TypeError – If func is not callable
- property HomogeneousEA.crossover_prob: float¶
Crossover probability.
- Return type:
- Setter:
Set a new crossover probability
- Parameters:
prob (float) – The new probability. If omitted,
_default_crossover_probis chosen- Raises:
TypeError – If prob is not a real number
ValueError – If prob is not in (0, 1)
- property HomogeneousEA.custom_termination_func: Callable[[Trainer], bool] | None¶
Custom termination criterion.
Although the trainer will always stop when the
max_num_itersare reached, a custom termination criterion can be set to detect convergente and stop the trainer earlier. This custom termination criterion must be a function which receives the trainer as its unique argument and returns a boolean value,Trueif the search should terminate orFalseotherwise.If more than one arguments are needed to define the termination condition,
functools.partial()can be used:from functools import partial def my_crit(trainer, max_iters): if trainer.current_iter < max_iters: return False return True trainer.custom_termination_func = partial(my_crit, max_iters=10)
- property HomogeneousEA.fitness_function: FitnessFunction¶
Training fitness function.
- Return type:
- Setter:
Set a new fitness function
- Parameters:
func (FitnessFunction) – The new training fitness function
- Raises:
TypeError – If func is not a valid fitness function
- property HomogeneousEA.gene_ind_mutation_prob: float¶
Gene independent mutation probability.
- Return type:
- Setter:
Set a new gene independent mutation probability
- Parameters:
prob (float) – The new probability. If omitted,
_default_gene_ind_mutation_probis chosen- Raises:
TypeError – If prob is not a real number
ValueError – If prob is not in (0, 1)
- property HomogeneousEA.index: int¶
Trainer index.
The trainer index is only used by distributed trainers. For the rest of trainers
_default_indexis used.- Return type:
- Setter:
Set a new value for trainer index.
- Parameters:
value (int) – New value for the trainer index. If set to
None,_default_indexis chosen- Raises:
TypeError – If value is not an integer
ValueError – If value is a negative number
- property HomogeneousEA.max_num_iters: int¶
Maximum number of iterations.
- Return type:
- Setter:
Set a new value for the maximum number of iterations
- Parameters:
value (int) – The new maximum number of iterations. If set to
None, the default maximum number of iterations,_default_max_num_iters, is chosen- Raises:
TypeError – If value is not an integer
ValueError – If value is not a positive number
- property HomogeneousEA.mutation_func: Callable[[Individual, float], tuple[Individual]]¶
Mutation function.
- Return type:
- Setter:
Set a new mutation function
- Parameters:
func (Callable) – The new mutation function. If omitted,
_default_mutation_funcis chosen- Raises:
TypeError – If func is not callable
- property HomogeneousEA.mutation_prob: float¶
Mutation probability.
- Return type:
- Setter:
Set a new mutation probability
- Parameters:
prob (float) – The new probability. If omitted,
_default_mutation_probis chosen- Raises:
TypeError – If prob is not a real number
ValueError – If prob is not in (0, 1)
- property HomogeneousEA.pop_size: int¶
Population size.
- Return type:
- Setter:
Set a new population size
- Parameters:
size (int) – The new population size. If omitted,
_default_pop_sizeis chosen- Raises:
ValueError – If size is not greater than zero
- property HomogeneousEA.representatives: list[list[Solution | None]] | None¶
Representatives of the other species.
Only used by cooperative trainers. If the trainer does not use representatives,
Noneis returned.
- property HomogeneousEA.selection_func: Callable[[list[Individual], int, Any], list[Individual]]¶
Selection function.
- Return type:
- Setter:
Set a new selection function
- Parameters:
func (Callable) – The new selection function. If omitted,
_default_selection_funcis chosen- Raises:
TypeError – If func is not callable
- property HomogeneousEA.selection_func_params: dict[str, Any]¶
Parameters of the selection function.
- Return type:
- Setter:
Set new parameters for the selection function
- Parameters:
params (dict) – The new parameters. If omitted,
_default_selection_func_paramsis chosen- Raises:
Private properties¶
- property HomogeneousEA._default_checkpoint_activation: bool¶
Default checkpointing activation.
- Returns:
- Return type:
- property HomogeneousEA._default_checkpoint_filename: str¶
Default checkpointing file name.
- Returns:
- Return type:
- property HomogeneousEA._default_checkpoint_freq: int¶
Default checkpointing frequency.
- Returns:
- Return type:
- property HomogeneousEA._default_crossover_func: Callable[[Individual, Individual], tuple[Individual, Individual]]¶
Default crossover function.
- Returns:
The
crossover()method ofsolution_cls- Return type:
- property HomogeneousEA._default_crossover_prob: float¶
Default crossover probability.
- Returns:
- Return type:
- property HomogeneousEA._default_gene_ind_mutation_prob: float¶
Default gene independent mutation probability.
- Returns:
- Return type:
- property HomogeneousEA._default_max_num_iters: int¶
Default maximum number of iterations.
- Returns:
- Return type:
- property HomogeneousEA._default_mutation_func: Callable[[Individual, float], tuple[Individual]]¶
Default mutation function.
- Returns:
The
mutate()method ofsolution_cls- Return type:
- property HomogeneousEA._default_mutation_prob: float¶
Default mutation probability.
- Returns:
- Return type:
- property HomogeneousEA._default_selection_func: Callable[[list[Individual], int, Any], list[Individual]]¶
Default selection function.
- Returns:
- Return type:
- property HomogeneousEA._default_selection_func_params: dict[str, Any]¶
Parameters of the default selection function.
- Returns:
- Return type:
Methods¶
- HomogeneousEA.best_representatives() list[list[Solution]] | None¶
Return a list of representatives from each species.
Only used for cooperative trainers.
- abstract HomogeneousEA.best_solutions() tuple[HallOfFame]¶
Get the best solutions found for each species.
This method must be overridden by subclasses to return a correct value.
- Returns:
One Hall of Fame for each species
- Return type:
- Raises:
NotImplementedError – If has not been overridden
- HomogeneousEA.dump(filename: str) None¶
Serialize this object and save it to a file.
- Parameters:
filename (str) – The file name.
- Raises:
TypeError – If filename is not a valid file name
ValueError – If the filename extension is not
SERIALIZED_FILE_EXTENSION
- HomogeneousEA.evaluate(sol: Solution, fitness_func: FitnessFunction | None = None, index: int | None = None, representatives: Sequence[Sequence[Solution | None]] | None = None) None¶
Evaluate one solution.
Its fitness will be modified according with the fitness function results. Besides, if called during training, the number of evaluations will be also updated.
- Parameters:
sol (Solution) – The solution
fitness_func (FitnessFunction) – The fitness function. If omitted, the default training fitness function (
fitness_function) is usedindex (int) – Index where sol should be inserted in the representatives sequence to form a complete solution for the problem. If omitted,
indexis usedrepresentatives (Sequence[Sequence[Solution]]) – Sequence of representatives of other species or
None(if no representatives are needed to evaluate sol). If omitted, the current value ofrepresentativesis used
- HomogeneousEA.reset() None¶
Reset the trainer.
Delete the state of the trainer (with
_reset_state()) and also all the internal data structures needed to perform the search (with_reset_internals()).This method should be invoqued each time a hyper parameter is modified.
- HomogeneousEA.test(best_found: Sequence[HallOfFame], fitness_func: FitnessFunction | None = None, representatives: Sequence[Sequence[Solution]] | None = None) None¶
Apply the test fitness function to the solutions found.
Update the solutions in best_found with their test fitness.
- Parameters:
best_found (Sequence[HallOfFame]) – The best solutions found for each species. One
HallOfFamefor each speciesfitness_func (FitnessFunction) – Fitness function used to evaluate the final solutions. If ommited, the default training fitness function (
fitness_function) will be usedrepresentatives (Sequence[Sequence[Solution]]) – Sequence of representatives of other species or
None(if no representatives are needed). If omitted, the current value ofrepresentativesis used
- Raises:
TypeError – If any parameter has a wrong type
ValueError – If any parameter has an invalid value.
- HomogeneousEA.train(state_proxy: DictProxy | None = None) None¶
Perform the training process.
- Parameters:
state_proxy (DictProxy) – dictionary proxy to copy the output state of the trainer procedure. Only used if train is executed within a
multiprocess.Process. Defaults toNone
Private methods¶
- HomogeneousEA._default_termination_func() bool¶
Default termination criterion.
- Returns:
Trueifmax_num_itersiterations have been run- Return type:
- abstract HomogeneousEA._do_iteration() None¶
Implement an iteration of the search process.
This abstract method should be implemented by subclasses in order to implement the desired behavior.
- HomogeneousEA._do_iteration_stats() None¶
Perform the iteration stats.
This method should be implemented by subclasses in order to perform the adequate stats.
- HomogeneousEA._finish_iteration() None¶
Finish an iteration.
Finish the iteration metrics (number of evaluations, execution time) after each iteration is run.
- HomogeneousEA._finish_search() None¶
Finish the search process.
This method is called after the search has finished. It can be overridden to perform any treatment of the solutions found.
- HomogeneousEA._get_state() dict[str, Any]¶
Return the state of this trainer.
Default state is a dictionary composed of the values of the
logbook,num_evals,runtime,current_iter, andrepresentativestrainer properties, along with a private boolean attribute that informs if the search has finished and also the states of therandomandnumpy.randommodules.If subclasses use any more properties to keep their state, the
_get_state()and_set_state()methods must be overridden to take into account such properties.- Return type:
- HomogeneousEA._init_internals() None¶
Set up the trainer internal data structures to start searching.
Create all the internal objects, functions and data structures needed to run the search process. For the
Trainerclass, only aStatisticsobject is created. Subclasses which need more objects or data structures should override this method.
- HomogeneousEA._init_representatives() None¶
Init the representatives of the other species.
Only used for cooperative approaches, which need representatives of all the species to form a complete solution for the problem. Cooperative subclasses of the
Trainerclass should override this method to get the representatives of the other species initialized.
- HomogeneousEA._init_search() None¶
Init the search process.
Initialize the state of the trainer (with
_init_state()) and all the internal data structures needed (with_init_internals()) to perform the search.
- HomogeneousEA._init_state() None¶
Init the trainer state.
If there is any checkpoint file, the state is initialized from it with the
_load_state()method. Otherwise a new initial state is generated with the_new_state()method.
- HomogeneousEA._load_state() None¶
Load the state of the last checkpoint.
- Raises:
Exception – If the checkpoint file can’t be loaded
- HomogeneousEA._new_state() None¶
Generate a new trainer state.
If subclasses add any new property to keep their state, this method should be overridden to initialize the full state of the trainer.
- HomogeneousEA._postprocess_iteration() None¶
Postprocess after doing the iteration.
Subclasses should override this method to make any postprocessment after performing an iteration.
- HomogeneousEA._preprocess_iteration() None¶
Preprocess before doing the iteration.
Subclasses should override this method to make any preprocessment before performing an iteration.
- HomogeneousEA._reset_internals() None¶
Reset the internal structures of the trainer.
If subclasses overwrite the
_init_internals()method to add any new internal object, this method should also be overridden to reset all the internal objects of the trainer.
- HomogeneousEA._reset_state() None¶
Reset the trainer state.
If subclasses overwrite the
_new_state()method to add any new property to keep their state, this method should also be overridden to reset the full state of the trainer.
- HomogeneousEA._save_state() None¶
Save the state at a new checkpoint.
- Raises:
Exception – If the checkpoint file can’t be written
- HomogeneousEA._search() None¶
Apply the search algorithm.
Execute the trainer until the termination condition is met. Each iteration is composed by the following steps:
- HomogeneousEA._set_cooperative_fitness(sol: Solution, fitness_trials_values: [Sequence[tuple[float]]]) None¶
Estimate a solution fitness from multiple evaluation trials.
Applies an average of the fitness trials values. Trainers requiring another estimation should override this method.
- HomogeneousEA._set_state(state: dict[str, Any]) None¶
Set the state of this trainer.
If subclasses use any more properties to keep their state, the
_get_state()and_set_state()methods must be overridden to take into account such properties.- Parameters:
state (dict) – The last loaded state
- HomogeneousEA._start_iteration() None¶
Start an iteration.
Prepare the iteration metrics (number of evaluations, execution time) before each iteration is run.
- HomogeneousEA._termination_criterion() bool¶
Control the search termination.
- Returns:
Trueif either the default termination criterion or a custom termination criterion is met. The default termination criterion is implemented by the_default_termination_func()method. Another custom termination criterion can be set withcustom_termination_funcmethod.- Return type:

