culebra.trainer.aco.abc.SingleObjACO class¶
- class SingleObjACO(solution_cls: type[Ant], species: Species, fitness_function: FitnessFunction, initial_pheromone: float | Sequence[float, ...], heuristic: ndarray[float] | Sequence[ndarray[float], ...] | None = None, pheromone_influence: float | Sequence[float, ...] | None = None, heuristic_influence: float | Sequence[float, ...] | None = None, exploitation_prob: float | None = None, max_num_iters: int | None = None, custom_termination_func: Callable[[SingleColACO], bool] | None = None, col_size: int | None = None, checkpoint_activation: bool | None = None, checkpoint_freq: int | None = None, checkpoint_filename: str | None = None, verbosity: bool | None = None, random_seed: int | None = None)¶
Bases:
SingleColACOCreate a new single-colony ACO trainer.
- Parameters:
species (Species) – The species for all the ants
fitness_function (FitnessFunction) – The training fitness function
initial_pheromone (float | Sequence[float]) – Initial amount of pheromone for the paths of each pheromone matrix. Both a scalar value or a sequence of values are allowed. If a scalar value is provided, it will be used for all the
num_pheromone_matricespheromone matrices.heuristic (ndarray[float] | Sequence[ndarray[float], ...]) – Heuristic matrices. Both a single matrix or a sequence of matrices are allowed. If a single matrix is provided, it will be replicated for all the
num_heuristic_matricesheuristic matrices. If omitted,_default_heuristicwill be used. Defaults toNonepheromone_influence (float | Sequence[float]) – Relative influence of each pheromone matrix (\({\alpha}\)). Both a scalar value or a sequence of values are allowed. If a scalar value is provided, it will be used for all the
num_pheromone_matricespheromone matrices. If omitted,_default_pheromone_influencewill be used. Defaults toNoneheuristic_influence (float | Sequence[float]) – Relative influence of each heuristic (\({\beta}\)). Both a scalar value or a sequence of values are allowed. If a scalar value is provided, it will be used for all the
num_heuristic_matricesheuristic matrices. If omitted,_default_heuristic_influencewill be used. Defaults toNoneexploitation_prob (float) – Probability to make the best possible move (\({q_0}\)). If omitted,
_default_exploitation_probwill be used. Defaults toNonemax_num_iters (int) – Maximum number of iterations. If omitted,
_default_max_num_iterswill be used. Defaults toNonecustom_termination_func (Callable) – Custom termination criterion. If omitted,
_default_termination_func()is used. Defaults toNonecol_size (int) – The colony size. If omitted,
_default_col_sizewill be used. Defaults toNonecheckpoint_activation (bool) – Checkpoining activation. If omitted,
_default_checkpoint_activationwill be used. Defaults toNonecheckpoint_freq (int) – The checkpoint frequency. If omitted,
_default_checkpoint_freqwill be used. Defaults toNonecheckpoint_filename (str) – The checkpoint file path. If omitted,
_default_checkpoint_filenamewill be used. Defaults toNoneverbosity (bool) – The verbosity. If omitted,
_default_verbositywill be used. Defaults toNone
- Raises:
TypeError – If any argument is not of the appropriate type
ValueError – If any argument has an incorrect value
Class attributes¶
- SingleObjACO.objective_stats = {'Avg': <function mean>, 'Max': <function max>, 'Min': <function min>, 'Std': <function std>}¶
Statistics calculated for each objective.
- SingleObjACO.stats_names = ('Iter', 'NEvals')¶
Statistics calculated each iteration.
Class methods¶
- classmethod SingleObjACO.load(filename: str) Base¶
Load a serialized object from a file.
- Parameters:
filename (str) – The file name.
- Returns:
The loaded object
- Raises:
TypeError – If filename is not a valid file name
ValueError – If the filename extension is not
SERIALIZED_FILE_EXTENSION
Properties¶
- property SingleObjACO.checkpoint_filename: str¶
Checkpoint file path.
- Return type:
- Setter:
Modify the checkpoint file path
- Parameters:
value (str) – New value for the checkpoint file path. If set to
None,_default_checkpoint_filenameis chosen- Raises:
TypeError – If value is not a valid file name
ValueError – If the value extension is not
SERIALIZED_FILE_EXTENSION
- property SingleObjACO.checkpoint_freq: int¶
Checkpoint frequency.
- Return type:
- Setter:
Modify the checkpoint frequency
- Parameters:
value (int) – New value for the checkpoint frequency. If set to
None,_default_checkpoint_freqis chosen- Raises:
TypeError – If value is not an integer
ValueError – If value is not a positive number
- property SingleObjACO.choice_info: ndarray[float] | None¶
Choice information for all the graph’s arcs.
The choice information is generated from both the pheromone and the heuristic matrices, modified by other parameters (depending on the ACO approach) and is used to obtain the probalility of following the next feasible arc for the node.
- property SingleObjACO.col_size: int¶
Colony size.
- Return type:
- Setter:
Set a new value for the colony size
- Parameters:
size (int) – The new colony size. If set to
None,_default_col_sizeis chosen- Raises:
ValueError – If size is not greater than zero
- property SingleObjACO.container: Trainer | None¶
Container of this trainer.
The trainer container is only used by distributed trainers. For the rest of trainers defaults to
None.
- property SingleObjACO.custom_termination_func: Callable[[Trainer], bool] | None¶
Custom termination criterion.
Although the trainer will always stop when the
max_num_itersare reached, a custom termination criterion can be set to detect convergente and stop the trainer earlier. This custom termination criterion must be a function which receives the trainer as its unique argument and returns a boolean value,Trueif the search should terminate orFalseotherwise.If more than one arguments are needed to define the termination condition,
functools.partial()can be used:from functools import partial def my_crit(trainer, max_iters): if trainer.current_iter < max_iters: return False return True trainer.custom_termination_func = partial(my_crit, max_iters=10)
- property SingleObjACO.exploitation_prob: float¶
Exploitation probability (\({q_0}\)).
- Return type:
- Setter:
Set a new value for the exploitation probability
- Parameters:
prob (float) – The new probability. If set to
None,_default_exploitation_probis chosen- Raises:
TypeError – If prob is not a real number
ValueError – If prob is not in [0, 1]
- property SingleObjACO.fitness_function: FitnessFunction¶
Training fitness function.
- Return type:
- Setter:
Set a new fitness function
- Parameters:
func (FitnessFunction) – The new training fitness function
- Raises:
TypeError – If func is not a valid fitness function
- property SingleObjACO.heuristic: tuple[ndarray[float], ...]¶
Heuristic matrices.
- Return type:
- Setter:
Set new heuristic matrices
- Parameters:
values (ndarray[float] | Sequence[ndarray[float], ...]) – The new heuristic matrices. Both a single matrix or a sequence of matrices are allowed. If a single matrix is provided, it will be replicated for all the heuristic matrices. If set to
None,_default_heuristicis chosen- Raises:
TypeError – If values is neither an
numpy.ndarraynor aSequenceofnumpy.ndarrayValueError – If values is a sequence of
numpy.ndarrayand its length is notnum_heuristic_matricesValueError – If any array has not the correct shape
ValueError – If any element in any array object is not a float number
ValueError – If any element in any array object is negative
- property SingleObjACO.heuristic_influence: tuple[float, ...]¶
Relative influence of heuristic (\({\beta}\)).
- Returns:
One value for each heuristic matrix
- Return type:
- Setter:
Set new values for the relative influence of each heuristic matrix
- Parameters:
values (float | Sequence[float]) – New value for the relative influence of each heuristic matrix. Both a scalar value or a sequence of values are allowed. If a scalar value is provided, it will be used for all the heuristic matrices. If set to
None,_default_heuristic_influenceis chosen- Raises:
TypeError – If values is neither a float nor a Sequence of float values
ValueError – If any element in values is negative
ValueError – If values is a sequence and it length is different from
num_heuristic_matrices
- abstract property SingleObjACO.heuristic_shapes: tuple[tuple[int, int], ...]¶
Shape of the heuristic matrices.
This property must be overridden by subclasses to return a correct value.
- Return type:
- Raises:
NotImplementedError – If has not been overridden
- property SingleObjACO.index: int¶
Trainer index.
The trainer index is only used by distributed trainers. For the rest of trainers
_default_indexis used.- Return type:
- Setter:
Set a new value for trainer index.
- Parameters:
value (int) – New value for the trainer index. If set to
None,_default_indexis chosen- Raises:
TypeError – If value is not an integer
ValueError – If value is a negative number
- property SingleObjACO.initial_pheromone: tuple[float, ...]¶
Initial value for each pheromone matrix.
- Returns:
One initial value for each pheromone matrix
- Return type:
- Setter:
Set the initial value for each pheromone matrix
- Parameters:
values (float | Sequence[float]) – New initial value for each pheromone matrix. Both a scalar value or a sequence of values are allowed. If a scalar value is provided, it will be used for all the pheromone matrices
- Raises:
TypeError – If values is neither a float nor a Sequence of float values
ValueError – If any element in values is negative or zero
ValueError – If values is a sequence and it length is different from
num_pheromone_matrices
- property SingleObjACO.max_num_iters: int¶
Maximum number of iterations.
- Return type:
- Setter:
Set a new value for the maximum number of iterations
- Parameters:
value (int) – The new maximum number of iterations. If set to
None, the default maximum number of iterations,_default_max_num_iters, is chosen- Raises:
TypeError – If value is not an integer
ValueError – If value is not a positive number
- property SingleObjACO.num_heuristic_matrices: int¶
Number of heuristic matrices used by this trainer.
- Return type:
- property SingleObjACO.num_pheromone_matrices: int¶
Number of pheromone matrices used by this trainer.
- Return type:
- property SingleObjACO.pheromone_influence: tuple[float, ...]¶
Relative influence of pheromone (\({\alpha}\)).
- Returns:
One value for each pheromone matrix
- Return type:
- Getter:
Return the relative influence of each pheromone matrix.
- Setter:
Set new values for the relative influence of each pheromone matrix
- Parameters:
values (float | Sequence[float]) – New value for the relative influence of each pheromone matrix. Both a scalar value or a sequence of values are allowed. If a scalar value is provided, it will be used for all the pheromone matrices. If set to
None,_default_pheromone_influenceis chosen- Raises:
TypeError – If values is neither a float nor a Sequence of float values
ValueError – If any element in values is negative
ValueError – If values is a sequence and it length is different from
num_pheromone_matrices
- abstract property SingleObjACO.pheromone_shapes: tuple[tuple[int, int], ...]¶
Shape of the pheromone matrices.
This property must be overridden by subclasses to return a correct value.
- Return type:
- Raises:
NotImplementedError – If has not been overridden
- property SingleObjACO.representatives: list[list[Solution | None]] | None¶
Representatives of the other species.
Only used by cooperative trainers. If the trainer does not use representatives,
Noneis returned.
Private properties¶
- property SingleObjACO._default_checkpoint_activation: bool¶
Default checkpointing activation.
- Returns:
- Return type:
- property SingleObjACO._default_checkpoint_filename: str¶
Default checkpointing file name.
- Returns:
- Return type:
- property SingleObjACO._default_checkpoint_freq: int¶
Default checkpointing frequency.
- Returns:
- Return type:
- abstract property SingleObjACO._default_col_size: int¶
Default colony size.
This property must be overridden by subclasses to return a correct default value.
- Return type:
- Raises:
NotImplementedError – If has not been overridden
- property SingleObjACO._default_exploitation_prob: float¶
Default exploitation probability (\({q_0}\)).
- Returns:
attr:~culebra.trainer.aco.DEFAULT_EXPLOITATION_PROB
- Return type:
- abstract property SingleObjACO._default_heuristic: tuple[ndarray[float], ...]¶
Default heuristic matrices.
This property must be overridden by subclasses to return a correct value.
- Return type:
- Raises:
NotImplementedError – If has not been overridden
- property SingleObjACO._default_heuristic_influence: tuple[float, ...]¶
Default relative influence of heuristic (\({\beta}\)).
- Returns:
The
DEFAULT_HEURISTIC_INFLUENCEfor each pheromone matrix- Return type:
- property SingleObjACO._default_max_num_iters: int¶
Default maximum number of iterations.
- Returns:
- Return type:
- property SingleObjACO._default_pheromone_influence: tuple[float, ...]¶
Default relative influence of pheromone (\({\alpha}\)).
- Returns:
The
DEFAULT_PHEROMONE_INFLUENCEfor each pheromone matrix- Return type:
Methods¶
- SingleObjACO.best_representatives() list[list[Solution]] | None¶
Return a list of representatives from each species.
Only used for cooperative trainers.
- SingleObjACO.best_solutions() tuple[HallOfFame]¶
Get the best solutions found for each species.
- Returns:
One Hall of Fame for each species
- Return type:
- SingleObjACO.dump(filename: str) None¶
Serialize this object and save it to a file.
- Parameters:
filename (str) – The file name.
- Raises:
TypeError – If filename is not a valid file name
ValueError – If the filename extension is not
SERIALIZED_FILE_EXTENSION
- SingleObjACO.evaluate(sol: Solution, fitness_func: FitnessFunction | None = None, index: int | None = None, representatives: Sequence[Sequence[Solution | None]] | None = None) None¶
Evaluate one solution.
Its fitness will be modified according with the fitness function results. Besides, if called during training, the number of evaluations will be also updated.
- Parameters:
sol (Solution) – The solution
fitness_func (FitnessFunction) – The fitness function. If omitted, the default training fitness function (
fitness_function) is usedindex (int) – Index where sol should be inserted in the representatives sequence to form a complete solution for the problem. If omitted,
indexis usedrepresentatives (Sequence[Sequence[Solution]]) – Sequence of representatives of other species or
None(if no representatives are needed to evaluate sol). If omitted, the current value ofrepresentativesis used
- SingleObjACO.reset() None¶
Reset the trainer.
Delete the state of the trainer (with
_reset_state()) and also all the internal data structures needed to perform the search (with_reset_internals()).This method should be invoqued each time a hyper parameter is modified.
- SingleObjACO.test(best_found: Sequence[HallOfFame], fitness_func: FitnessFunction | None = None, representatives: Sequence[Sequence[Solution]] | None = None) None¶
Apply the test fitness function to the solutions found.
Update the solutions in best_found with their test fitness.
- Parameters:
best_found (Sequence[HallOfFame]) – The best solutions found for each species. One
HallOfFamefor each speciesfitness_func (FitnessFunction) – Fitness function used to evaluate the final solutions. If ommited, the default training fitness function (
fitness_function) will be usedrepresentatives (Sequence[Sequence[Solution]]) – Sequence of representatives of other species or
None(if no representatives are needed). If omitted, the current value ofrepresentativesis used
- Raises:
TypeError – If any parameter has a wrong type
ValueError – If any parameter has an invalid value.
- SingleObjACO.train(state_proxy: DictProxy | None = None) None¶
Perform the training process.
- Parameters:
state_proxy (DictProxy) – dictionary proxy to copy the output state of the trainer procedure. Only used if train is executed within a
multiprocess.Process. Defaults toNone
Private methods¶
- SingleObjACO._ant_choice_info(ant: Ant) ndarray[float]¶
Return the choice info to obtain the next node the ant will visit.
All the previously visited nodes are discarded. Subclasses should override this method if the
Speciesconstraining the solutions of the problem supports node banning.
- abstract SingleObjACO._calculate_choice_info() None¶
Calculate the choice information.
The choice information is generated from both the pheromone and the heuristic matrices, modified by other parameters (depending on the ACO approach) and is used to obtain the probalility of following the next feasible arc for the node.
This method should be overridden by subclasses.
- Raises:
NotImplementedError – If has not been overridden
- SingleObjACO._default_termination_func() bool¶
Default termination criterion.
- Returns:
Trueifmax_num_itersiterations have been run- Return type:
- SingleObjACO._deposit_pheromone(ants: Sequence[Ant], weight: float = 1.0) None¶
Make some ants deposit weighted pheromone.
This method must be overridden by subclasses to take into account the correct number and shape of the pheromone matrices.
- Parameters:
weight (float) – Weight for the pheromone. Defaults to
DEFAULT_PHEROMONE_DEPOSIT_WEIGHT
- Raises:
NotImplementedError – If has not been overridden
- SingleObjACO._finish_iteration() None¶
Finish an iteration.
Finish the iteration metrics (number of evaluations, execution time) after each iteration is run.
- SingleObjACO._finish_search() None¶
Finish the search process.
This method is called after the search has finished. It can be overridden to perform any treatment of the solutions found.
- SingleObjACO._generate_ant() Ant¶
Generate a new ant.
The ant makes its path and gets evaluated.
- Returns:
The new ant
- Return type:
- SingleObjACO._get_state() dict[str, Any]¶
Return the state of this trainer.
Default state is a dictionary composed of the values of the
logbook,num_evals,runtime,current_iter, andrepresentativestrainer properties, along with a private boolean attribute that informs if the search has finished and also the states of therandomandnumpy.randommodules.If subclasses use any more properties to keep their state, the
_get_state()and_set_state()methods must be overridden to take into account such properties.- Return type:
- SingleObjACO._init_internals() None¶
Set up the trainer internal data structures to start searching.
Create all the internal objects, functions and data structures needed to run the search process. For the
SingleColACOclass, the colony, the choice_info matrix and the node list are created. Subclasses which need more objects or data structures should override this method.
- SingleObjACO._init_pheromone() None¶
Init the pheromone matrix(ces) according to the initial value(s).
- SingleObjACO._init_representatives() None¶
Init the representatives of the other species.
Only used for cooperative approaches, which need representatives of all the species to form a complete solution for the problem. Cooperative subclasses of the
Trainerclass should override this method to get the representatives of the other species initialized.
- SingleObjACO._init_search() None¶
Init the search process.
Initialize the state of the trainer (with
_init_state()) and all the internal data structures needed (with_init_internals()) to perform the search.
- SingleObjACO._init_state() None¶
Init the trainer state.
If there is any checkpoint file, the state is initialized from it with the
_load_state()method. Otherwise a new initial state is generated with the_new_state()method.
- SingleObjACO._load_state() None¶
Load the state of the last checkpoint.
- Raises:
Exception – If the checkpoint file can’t be loaded
- SingleObjACO._new_state() None¶
Generate a new trainer state.
If subclasses add any new property to keep their state, this method should be overridden to initialize the full state of the trainer.
- SingleObjACO._next_choice(ant: Ant) int | None¶
Choose the next node for an ant.
The election is made from the feasible neighborhood of the current node, which is composed of those nodes neither discarded nor visited yet by the ant and connected to its current node.
The best possible node is selected with probability
exploitation_prob. In case the best node is not chosen, the next node is selected probabilistically according to thechoice_infomatrix.
- SingleObjACO._pheromone_amount(ant: Ant) tuple[float, ...]¶
Return the amount of pheromone to be deposited by an ant.
The reciprocal of an objective fitness value will be used for minimization objectives, while the objective’s fitness value is used for maximization objectives.
- SingleObjACO._postprocess_iteration() None¶
Postprocess after doing the iteration.
Subclasses should override this method to make any postprocessment after performing an iteration.
- SingleObjACO._preprocess_iteration() None¶
Preprocess before doing the iteration.
Subclasses should override this method to make any preprocessment before performing an iteration.
- SingleObjACO._reset_internals() None¶
Reset the internal structures of the trainer.
Overridden to reset the colony, the choice_info matrix and the node list. If subclasses overwrite the
_init_internals()method to add any new internal object, this method should also be overridden to reset all the internal objects of the trainer.
- SingleObjACO._reset_state() None¶
Reset the trainer state.
If subclasses overwrite the
_new_state()method to add any new property to keep their state, this method should also be overridden to reset the full state of the trainer.
- SingleObjACO._save_state() None¶
Save the state at a new checkpoint.
- Raises:
Exception – If the checkpoint file can’t be written
- SingleObjACO._search() None¶
Apply the search algorithm.
Execute the trainer until the termination condition is met. Each iteration is composed by the following steps:
- SingleObjACO._set_cooperative_fitness(sol: Solution, fitness_trials_values: [Sequence[tuple[float]]]) None¶
Estimate a solution fitness from multiple evaluation trials.
Applies an average of the fitness trials values. Trainers requiring another estimation should override this method.
- SingleObjACO._set_state(state: dict[str, Any]) None¶
Set the state of this trainer.
If subclasses use any more properties to keep their state, the
_get_state()and_set_state()methods must be overridden to take into account such properties.- Parameters:
state (dict) – The last loaded state
- SingleObjACO._start_iteration() None¶
Start an iteration.
Prepare the iteration metrics (number of evaluations, execution time) before each iteration is run and create an empty ant colony. Overridden to calculate the choice information before executing the next iteration.
- SingleObjACO._termination_criterion() bool¶
Control the search termination.
- Returns:
Trueif either the default termination criterion or a custom termination criterion is met. The default termination criterion is implemented by the_default_termination_func()method. Another custom termination criterion can be set withcustom_termination_funcmethod.- Return type:
- abstract SingleObjACO._update_pheromone() None¶
Update the pheromone trails.
- Raises:
NotImplementedError – If has not been overridden

