culebra.trainer.aco module¶
Implementation of some ant colony optimization trainers.
This module is composed by:
The
abcsub-module, where some abstract base classes are defined to support the ACO trainers developed in this moduleSome popular single-objective ACO algorithms:
Algorithms relying on pheromone evaporation:
The
AntSystemclass, which implements the Ant System algorithmThe
ElitistAntSystemclass, which implements the Elitist Ant System algorithmThe
MMASclass, which implements the \({\small \mathcal{MAX}{-}\mathcal{MIN}}\) Ant System algorithm
Population-based approaches:
The
AgeBasedPACOclass, which implements a PACO approach with an age-based population update strategyThe
QualityBasedPACOclass, which implements a PACO approach with a quality-based population update strategy
Some multi-objective ACO algorithms:
ACO-based wrappers for Feature Selection problems:
The
ACOFSConvergenceDetectorclass, designed to enable stoppingACOFStrainers upon convergenceThe
ElitistACOFSclass. A new elitist ACO-based wrapper for Feature Selection problemsThe
PACOFSclass. A new population-based wrapper ACO approach for Feature Selection problems
Attributes¶
- DEFAULT_ACOFS_DISCARD_PROB = 0.5¶
Default probability of discarding a node (feature).
- DEFAULT_ACOFS_EXPLOITATION_PROB = 0¶
Default exploitation probability (\({q_0}\)) for ACO-FS approaches.
- DEFAULT_ACOFS_HEURISTIC_INFLUENCE = 0¶
Default heuristic influence (\({\beta}\)) for ACO-FS approaches.
- DEFAULT_ACOFS_INITIAL_PHEROMONE = 1¶
Default initial pheromone.
- DEFAULT_AS_EXPLOITATION_PROB = 0¶
Default exploitation probability (\({q_0}\)) for the Ant System trainer.
- DEFAULT_CONVERGENCE_CHECK_FREQ = 100¶
Default frequency to check if an elitist ACO has converged.
- DEFAULT_ELITE_WEIGHT = 0.3¶
Default weight for the elite ant (best-so-far ant) respect to the iteration-best ant.
- DEFAULT_EXPLOITATION_PROB = 0.9¶
Default exploitation probability (\({q_0}\)).
- DEFAULT_HEURISTIC_INFLUENCE = 2.0¶
Default heuristic influence (\({\beta}\)).
- DEFAULT_MMAS_ITER_BEST_USE_LIMIT = 250¶
Default limit for the number of iterations for the \({\small \mathcal{MAX}{-}\mathcal{MIN}}\) AS to give up using the iteration-best ant to deposit pheromone. Iterations above this limit will use only the global-best ant.
- DEFAULT_PHEROMONE_DEPOSIT_WEIGHT = 1.0¶
Default pheromone deposit weight.
- DEFAULT_PHEROMONE_EVAPORATION_RATE = 0.1¶
Default pheromone evaporation rate (\({\rho}\)).
- DEFAULT_PHEROMONE_INFLUENCE = 1.0¶
Default pheromone influence (\({\alpha}\)).

